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The additional resistance due to dissipation of the energy of turbulent
fluctuations by solid particles is determined on the basis of a theoreti-
cal analysis. The results obtained are compared with experimental
data.

In calculating the characteristics of pipe flows of
air mixtures with dispersed solids, it is of consider-
able importance to calculate with sufficient accuracy
the additional resistances due to the presence of the
solid particles in the flow.

In this paper an attempt is made to determine the
importance of the effect on additional resistance of
the dissipation of the energy of turbulent fluctuations
by fine particles (diameter less than 107 m),

We shall examine the motion of a highly dispersed
air mixture at considerable velocities, making the as-
sumptions, usual for fine particles, that the mean
translational velocities of the particles and the carrier
medium are equal, and that the distribution of paxti-
cles over the cross section of the flow is fairly uni-
form. We shall also assume that the influence of the
solids on the kinematic structure of the flow is negli-
gible (low concentrations), and that the number of col-
lisions between particles is small. The question of
the influence of the gravitational field on the motion of
the particles will be examined below.

When the particles move in large-scale eddies with
low wave numbers (low frequencies), entrainment is
complete. In this case there is additional expenditure
of energy due to enhanced momentum transfer as a re-
sult of the increase in the density of the medium, i.e.,
the physical picture is one of transport of a fluid of
high specific weight with a viscosity equal to that of
the carrier medium,

When the motion is in small-scale eddies with high
wave numbers (high frequencies), the entrainment of
the particles is incomplete, and there is relative mo-
tion between the particles and the medium, resulting
in additional dissipation of the turbulent fluctuation
energy.

We shall select some micro-volume of the fluid,
moving with mean velocity U, the fluctuation velocity
component ui' (i=1; 2; 3) being a function of some char-
acteristic frequency w associated with the scale of the
chosen volume., We shall examine the motion of a par-
ticle in this volume, in a coordinate system moving
with velocity 1.

For nonuniform motion of a particle in a fluid in the
general case, in addition to viscous resistance, we
should take into account the resistance due to the ex-
penditure of energy in accelerating the fluid itself.
Fuchs [1] showed that for nonuniform motion of a solid
particle in a gas, when pg > p,, the unsteady effects

may be neglected at small Rey, and the resistance
may be considered to be noninertial, i.e., to corre-
spond to the resistance at a constant velocity equal
to the velocity at the given instant. Therefore, for
finely dispersed air mixtures with spherical particles
of diameter <10™* m, the resistance of the medium
when the particle motion is nonuniform is given with
sufficient accuracy by Stokes law. Because the density
of the medium, p,, is small, we may consider that
Pg — Pp = Pg.

Then in the chosen coordinate system, with gravity
taken into account, the equation of motion of a particle
may be written in the form
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ot = p,dY18n.

The quantity 7 has the dimension of time and is the
characteristic quantity determining the motion of the
particle,

Because of the quasi-periodic nature of the turbu-
lent fluctuations, for some specific perturbation scale
u} may, as usual, be written approximately as

u; =uysinal. (3)

The solution of an equation of type (2) for the mo-
tion of a particle in a periodically fluctuating fluid (but
without allowance for the field of gravity) was analyzed
in detail in [1]. By a similar method, we can find w;
for steady motion from (2) and (3).

For the plane problem (i = 1; 2), the components of
relative velocity of the particle may be written as fol-
lows:
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where

¢ = arcigoT.

It should be noted that g7 = wa.

We shall examine the conditions under which the
force of gravity may be neglected, We find the mean
square of the first term on the right of Eq, (5)
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In addition, we similarly obtain from (3)

l'[;au;x/yff. (6)

The region in which gravity forces may be neglected
is defined by the inequality

‘-‘_;m/v‘ A 1)

At high frequencies when w?* > 1, condition (7)
may be written in the form

x> & ®)

and at low frequencies when w?72 « 1 in the form

Ue> g ©

In pneumatic conveyor systems, the transport ve-
locity is usually assumed to be about 20-25 m/sec.
The intensity of turbulence is roughly 0. 04, There-
fore the mean fluctuation velocity in these conditions
may be taken to be T' = 1 m/sec,

For particles of diameter 10™ to 1075 m and den-
sity pg = 1000 kg/m®, T varies in the range 3 . 1072 to
310 sec. .

Condition (8) is satisfied with sufficient accuracy
when 7 < 3+ 1072 sec, Condition (9) is satisfied when
w > 50 cps.

We shall examine the experimental characteristics
for a turbulent flow presented in [2]. It can be seen
from Fig. 4.3 of [2] that for the flow core the least
wave numbers are of the order of 2 - 10~2% Since the
wave number is defined as k = w/U;, and under the
experimental conditions Uy, = 30 m/sec, the least fre-
quencies w will correspondingly be about 60,
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Therefore, when d < 10™* m, for an approximate
solution of the problem, the influence of the gravity
forces may be neglected, and both components of rel-
ative velocity of the particle will be given by (4).

When the particle moves in a viscous medium, the
work of the resistance forces may be expressed as

| 3ndqu, dx. (10)
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In the case examined, we have simultaneous motion
of the particles and of the medium, and we must there-
fore replace v; in (10) by w;. Since dx = w;dt, we find
the work done by the resistance forces in unit time,
taking account of (4), to be
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A similar approach was used in [3] to estimate the
dissipation of the energy of turbulent fluctuations by
solids, However, the author did not demonstrate the
relationship between this effect and the general param-
eters of the two-phase flow.

The power lost in particle friction in the velocity
fluctuations in unit volume is

q;=gq;n. (12)

From (11) and (12) we obtain an equation for the to-
tal energy dissipated by particle friction in longitudi-
nal and vertical fluctuations in unit volume and unit
time:
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Since the turbulence represents the superposition
of eddies of different scales, particles moving in large-
scale eddies simultaneously take part in the motion of
small and very small eddies located within the large
eddies. The minimum scale of eddies, or the internal
scale of turbulence, has a dimension of the order 1072
to 10~ m, which is 10-100 times greater than the size
of the particles, so that the main mass of particles in-
teracts with precisely the micro-eddies of the fluid;
and the dissipation of fluctuation energy is determined
by this interaction. A small fraction of the particles
at the junction between large eddies takes part directly

Total Energy Losses in the Motion of Air Mixtures and Losses
Due to the Dissipation of Fluctuation Energy

Results of [4]

Calculated values
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in the large-scale fluctuations, but the energy dissipat-
ed in this way is negligible, since in this case w — 0,
w; —~ 0, and g — 0. :

Because of the statistical nature of turbulence, it
is impossible to distinguish any particular size of mi-
cro-eddy interacting with the particles, or the corre-
sponding frequency. It may be assumed, however,
that energy dissipation occurs in the interaction of
particles with small eddies in the region of high wave
numbers, in excess of some characteristic number
ky. In the high wave number region Kolmogorov's hy-
potheses are confirmed:

Ek)y~FE7,

The mean fluctuation velocity component in the re-
gion k > ky may be found from the equation

Wy =\ AR,

I

(14)

where

A == const.

We shall use the experimental data given in [2]
(pipe diameter 0.247 m, Uy, = 30 m/sec). We choose
the point ky = 10 on Fig. 4, 3 of [2] as the lower bound-
ary of the region of intense dissipation of eddies by
particles, It should be noted that, since the mean fluc-
tuating velocity is determined over the whole region
above ki, some arbitrariness in the choice of this point
has little influence on the result.

For comparison we choose the point k, = 10°, which
includes the region of both micro-eddies and average
energy-containing eddies; this gives a deliberately
overestimated result for the energy dissipation. The
corresponding frequencies will be

m;z/e,Um = 10.3.10° = 3-10*gec™!; z = 4.77- 10%sec™};

4.
e~ 1-3-10% == 2. 10%sec™!; 2, = 4.77-10%sec™ .

We note that for particles of diameter 2.5+ 107> m
and 7=1,93 - 107° sec, even with w = w, = 3 » 10
sec~l, wir?> 1,

Therefore, for the region examined, with sufficient
accuracy it may be assumed that

ol + o) = 1. (15)

Since the turbulence is isotropic in the high wave
number region, replacing the peak values of the ve-
locity fluctuations by their mean square values ac-
cording to (6) and taking (15) into account, we may
write (13) in the form

g 3602 (n/d?) p{peps UL, (16)

or

g 20U p/r, an
where a is defined in the region k > ky.

We shall examine a section of pipe with cross-sec-
tional area F and length !, We denote by dp the pressure
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drop in a length dI due to dissipation of fluctuation en-
ergy by the particles. The work done by the pressure
forces will be equal to Fdpdl.

The work done by the dissipation forces is

gFdldt qldlbdl Uy,

Hence we obtain

cdp o qdiUys oy o pe gl
Taking into account that (p; — p,)/f = i, we finally
obtain

AN 36a7 (n P p (00 ') U, (18)

or

Al 207 p (0y/ TV Uiy (19)

To evaluate the influence of the dissipation of fluc-
tuation energy by the particles, calculate Ai from (18)
and compare this with experimental data on the pneu-
matic transport of coal dust in a vertical pipe [4].
From Fig. 4.3 of [2] we determine, in accordance with
(14), the mean square fluctuation velocities for re-
gions k > ky and k > ky, The squares of the intensities
of turbulence are

al 0423107 ai  0.193.10-%

In [4] the density of the coal was 1660 kg/m® and the
mean square particle diameter was 4.74 - 107° m, The

- results of the experiment (without allowance for the

weight of the column of air mixture) and the calculated
values of Ai are given in the table,

It can be seen from the table that the additional
flow resistance due to dissipation of fluctuation energy
by the particles, even for the region k > k,, i.e,,
when clearly overestimated, constitutes only about 4%
of the additional resistance due to the presence of sol-
ids in the stream. Therefore, in practical calcula-
tions this particular effect need not be taken info ac-
count,

NOTATION

1) mean velocity of fluid; u} (i =1, 2, 3)) fluctuating component
of velocity; w) angular frequency; pg and py) density of solids and of
air, respectively; Re,) Reynolds number for particle; v;) particle ve-
locity; wj) relative particle velocity; V) particle volume; d) particle
diameter; 1) viscosity of air; g) acceleration due to gravity; T) parti-
cle relaxation time; uy;) amplitude of turbulent velocity fluctuations;
z) frequency of fluctuations; t) time; ) phase shift angle; w,)hy-
draulic size of particles; 'ﬁi') mean square velocity of turbulent fluc-
tuations; Upy) mean flow velocity; k) wave number; ) work done by
viscosity forces; qi, qi, q) power; T = 21 /w) period of oscillation;

n = 65/nd®) number of particles in unit volume; s) volume concentra-
tion of air mixture; E(k)) spectral function of energy of turbulent fluc~
tuations; a =10/Up,) intensity of turbulence; F) area of pipe cross sec~
tion of air mixture; E(k) spectral function of energy of turbulent fluc-
tuations; a = u/Upy) intensity of turbulence; F) area of pipe cross sec-
tion; I) length of pipe; p) pressure; i) specific pressure loss (hydraulic
gradient); Ai) specific pressure loss due to dissipation of fluctuarion en-
ergy by particles; p) mass concentration of air mixture.
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